Metabolites involved in cellular communication among human cumulus-oocyte-complex and sperm during in vitro fertilization
نویسندگان
چکیده
BACKGROUND Fertilization is a key physiological process for the preservation of the species. Consequently, different mechanisms affecting the sperm and the oocyte have been developed to ensure a successful fertilization. Thus, sperm acrosome reaction is necessary for the egg coat penetration and sperm-oolema fusion. Several molecules are able to induce the sperm acrosome reaction; however, this process should be produced coordinately in time and in the space to allow the success of fertilization between gametes. The goal of this study was to analyze the metabolites secreted by cumulus-oocyte-complex (COC) to find out new components that could contribute to the induction of the human sperm acrosome reaction and other physiological processes at the time of gamete interaction and fertilization. METHODS For the metabolomic analysis, eighteen aliquots of medium were used in each group, containing: a) only COC before insemination and after 3 h of incubation; b) COC and capacitated spermatozoa after insemination and incubated for 16-20 hours; c) only capacitated sperm after 16-20 h in culture and d) only fertilization medium as control. Six patients undergoing assisted reproduction whose male partners provided normozoospermic samples were included in the study. Seventy-two COC were inseminated. RESULTS The metabolites identified were monoacylglycerol (MAG), lysophosphatidylcholine (LPC) and phytosphingosine (PHS). Analysis by PCR and in silico of the gene expression strongly suggests that the cumulus cells contribute to the formation of the PHS and LPC. CONCLUSIONS LPC and PHS are secreted by cumulus cells during in vitro fertilization and they could be involved in the induction of human acrosome reaction (AR). The identification of new molecules with a paracrine effect on oocytes, cumulus cells and spermatozoa will provide a better understanding of gamete interaction.
منابع مشابه
I-13 Infertility with Impaired Zona Pellucida Adhesion of Spermatozoa from Mice LackingTauCstF-64
Background: Fertilization is a multistep process requiring spermatozoa with unique cellular structures and numerous germ cell-specific molecules that function in the various steps. In the highly coordinated process of male germ cell development, RNA splicing and polyadenylation help regulate gene expression to ensure formation of functional spermatozoa. Male germ cells express tauCstF-64 (Cstf2...
متن کاملP-90: Ascorbic Acid Effects on In Vitro Fertilization of Ovine Oocyte with or without Cumulus Cells
Background: In vitro maturation and fertilization are techniques to increase efficiency of mammals reproduction. However, in vitro culture conditions exert an imbalance between oxidants and antioxidants which may reduce live birth and pregnancy rates when compare to in vivo conditions. Materials and Methods: The present study was conducted as a part of the ovine IVF program organized by Univers...
متن کاملPorcine oocyte maturation in vitro: role of cAMP and oocyte-secreted factors – A practical approach
Polyspermy or the penetration of more than one sperm cell remains a problem during porcine in vitro fertilization (IVF). After in vitro culture of porcine zygotes, only a low percentage of blastocysts develop and their quality is inferior to that of in vivo derived blastocysts. It is unknown whether the cytoplasmic maturation of the oocyte is sufficiently sustained in current in vitro maturatio...
متن کاملP-110: Effect of Increasing Amount of Oocyte Secreted Factors on Cumulus Expansion of Bovine Cumulus-Oocyte Complexes
Background: In vitro maturation is a good method to decrease cancer risk of superovulation by gonadotropin hormones. A paracrine effect of oocyte secretions on oocyte developmental competence is under investigation. Apart from oocyte maturation, ovulation in vivo requires a precise control of extracellular matrix modification. Cumulus cells secrete hyaluronan to form a muco-elastic extracellula...
متن کاملReducing the time of sperm-oocyte interaction in human in-vitro fertilization improves the implantation rate.
Human oocyte development was evaluated after a reduced time exposure to spermatozoa in vitro. A total of 119 patients were assigned to two study groups in a randomized prospective study in which each patient's oocytes were exposed to spermatozoa for either 1 h (group 1 - 58 patients) or the standard 16 h incubation period (group 2 - 61 patients). The fertilization rate obtained in group 1 was h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2015